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Fig. 1. (A) Illustrative year distributions of two hypothetical metrics and the whole corpus of papers, all with similar Year entropy S. (B) The Year entropy for the
top papers obtained by three evaluated metrics and for all papers in APS data (7). (C) The Mahalanobis distance of the top papers obtained for the evaluated
metrics and the 95th percentile of the Mahalanobis distance obtained for simulated unbiased distributions (6). (D) Ranking positions of the 87 PRL milestone
letters (8) by ĉ10 and c10 (citation count 10 years after publication), as in figure 3C in ref. 3. (E) Ranking positions of the PRL milestone letters by ĉ10 and c (raw
citation count). (F ) The fraction of PRL milestones among the top publications (8) for the evaluated metrics.

Developing unbiased indicators of scientific impact has long
been a central question in the scientometrics and science of
science communities (1, 2). Ke et al. (3) recently tackled the
ambitious challenge of developing a paper-level network-
based indicator that can be fairly compared across time
and fields even without the need for a field classification
system, concluding that their proposed ĉ10 achieves this
objective. The idea of leveraging a network-based mecha-
nism to prevent impact indicator bias provides a compelling
perspective to the long-standing debate on indicator bias,
which could inspire many future works. Unfortunately, the
validation performed in the paper does not properly test
for bias, nor does it test properly for the indicator’s ability
to detect groundbreaking research.

To test for age bias, ref. 3 considers an indicator’s top
p% publications and measures their diversity in time using
the entropy of the normalized year count distribution.
Interpreting entropy as a proxy for bias is meaningful
only if the unbiased distribution is uniform. However, for
all papers to have an equal chance of being top-ranked,
the unbiased distribution is the papers’ yearly distribution,
which is strongly uneven (4). Fig. 1A shows a nearly unbiased
metric 1 and a strongly biased metric 2. However, Year

entropy suggests that both metrics have the same bias level,
thus defeating the original purpose of the bias test.

A more appropriate test for bias relies on measuring the
distance between the year distribution of the top p% papers
by a given metric and that of all papers (hereafter, unbiased
distribution) (5, 6). In the American Physical Society (APS)
citation dataset (7), Year entropy values are in the same
range as reported in ref. 3 (Fig. 1B). The distance-based
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test (6) reveals that ĉ10 nevertheless exhibits a strong age
bias. Its Mahalanobis distance (6) from the distribution of all
papers is higher than the 95th percentile of the distances
achieved by simulated unbiased distributions and it is even
more biased than c10 (Fig. 1C). We find that this is due to
ĉ10 ’s bias toward older papers, already evident in figure 4C
in ref. 3.

To validate ĉ10 ’s ability to identify groundbreaking
research, ref. 3 shows that most APS milestone letters are
better ranked by ĉ10 than by c10. We replicate their result
in the APS dataset (Fig. 1D). However, raw citation count c
outperforms both c10 and ĉ10 (Fig. 1 E and F ). The reason is

that, unlike previous works (7, 8), the temporal distribution
of the milestones is not controlled for in ref. 3. As raw citation
count c favors old papers and the APS milestones tend to
be old (7), ref. 3’s evaluation benefits c.

In sum, the idea of using network-based mechanisms to
prevent biases is compelling, yet ĉ10 is not unbiased. Beyond
age and field, ranking systems can be subject to additional
concerning biases (9), requiring even more caution when
concluding indicators’ fairness. These nuances call for more
research which could advance our understanding of the
evolution of science as well as address broader issues on
algorithmic bias and fairness.
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