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Abstract
Networks to distribute goods, from raw materials to food and medicines, are the
backbone of a functioning economy. They are shaped by several supply relations
connecting manufacturers, distributors, and final buyers worldwide. We present a
network-based model to describe the mechanisms underlying the emergence and
growth of distribution networks. In our model, firms consider two practices when
establishing new supply relations: centralization, the tendency to choose highly
connected partners, and multi-sourcing, the preference for multiple suppliers.
Centralization enhances network efficiency by leveraging short distribution paths;
multi-sourcing fosters resilience by providing multiple distribution paths connecting
final buyers to the manufacturer. We validate the proposed model using data on drug
shipments in the US. Drawing on these data, we reconstruct 22 nationwide
pharmaceutical distribution networks. We demonstrate that the proposed model
successfully replicates several structural features of the empirical networks, including
their out-degree and path length distributions as well as their resilience and efficiency
properties. These findings suggest that the proposed firm-level practices effectively
capture the network growth process that leads to the observed structures.
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1 Introduction
Our daily lives depend on numerous essential goods, such as food, clothes, and medicines.
Before reaching their final buyers, goods follow long journeys: they are first produced by
manufacturers, they travel vast geographical distances while passing through multiple dis-
tributors. The interactions of manufacturers and distributors give rise to intricate distri-
bution networks that grow more complex every year [1, 2]. This has recently revealed
some significant downsides. The Covid-19 pandemic and the conflict in Ukraine have
highlighted that even local shortages can be amplified through the supply linkages and ulti-
mately affect millions of people [3–6]. These events have called for a deeper understanding
of distribution networks’ structures and how these structures affect their resilience [7].

Traditionally, scholars of supply chain management and operations logistics have con-
ceptualized distribution systems as linear chains. Using this perspective implies that sup-
ply chains in principle can be fully designed by a single manufacturer [8–10]. However,
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nowadays, this conventional approach falls short. While firms could choose their part-
ners, they have limited control over the business relations of those partners [11]. In other
words, the connections within the distribution system extend beyond the control of a sin-
gle entity, and the resulting structure strongly deviates from a simple chain. Thus, today’s
distribution systems should be better viewed as self-organized systems emerging from the
interactions of several firms [12, 13].

As recently highlighted [11, 14–16], these self-organized systems can be suitably rep-
resented as complex networks. Network science has provided tools to move beyond the
oversimplified chain perspective. Yet, research in this direction has been limited by a lack
of comprehensive data. Given this limitation, previous research has been constrained to
small-scale case studies [17, 18] or simulations without empirical validation [9, 19–21].
Network models validated on large-scale distribution systems are still missing [11].

We advance this research by proposing and validating a network growth model for large-
scale distribution networks. The model is parsimonious and considers only two fundamen-
tal necessities of these networks: efficiency and resilience. Efficiency is the ability to deliver
goods to final buyers in a timely and cost-effective manner [22, 23]. Resilience, instead, is
the ability to withstand, adapt and recover from disruptions [24, 25]. These are systemic
properties and depend on the entire network structure. Since no single entity has con-
trol over the whole structure, these properties are not imposed top-down. Instead, they
emerge from the aggregation of supply relations established between pairs of firms.

To what extent firms’ interactions, at the micro-level, translate into an increase in effi-
ciency and enhancement of resilience is an open question that we investigate. We model
firms’ interactions by considering two practices strictly related to efficiency and resilience:
centralization and multi-sourcing. Centralization is the tendency of firms to link to other
firms with the most connections [22]. Multi-sourcing, instead, is the tendency of firms to
source products from multiple suppliers to decrease their exposure to single failures [26].
We formalize these practices as interaction rules for link formation and use them to ex-
plain the growth of large-scale distribution networks. Moreover, we explore their impact
on the efficiency and resilience of empirical distribution networks.

Finally, we validate the model using data on over twenty pharmaceutical distribution
networks spanning the whole US. These networks are reconstructed from the unique ar-
cos dataset [27], that comprises all legal shipments of opioid drugs recorded between 2006
and 2014. Precisely, it lists 499,534,836 shipping records involving about 2,000 distribu-
tors and manufacturers firms and serving over 200,000 final buyers, such as pharmacies,
hospitals, and practitioners. Drawing on these large-scale data, we obtain stylized facts of
the empirical structures and check whether the proposed model reproduces them.

The remainder of the paper is organized as follows. In Sect. 2, we frame our study and its
contribution in the supply chain management, and operational logistics literature. Further,
we elucidate the concepts of efficiency and resilience as systemic properties. In Sect. 3,
we introduce the model and formalize the centralization and multi-sourcing practices as
interaction rules for link formation. Then, in Sect. 4, we first introduce the data used for
calibration. Subsequently, we provide a comprehensive analysis and interpretation of the
model parameters, followed by the validation of the model in reproducing key features of
the empirical networks. Finally, Sect. 5 presents the concluding remarks.
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Figure 1 Top: Geo-spatial visualization of the largest opioid distribution network in the US, namely the
distribution network of Mallinckrodt. Distributors are indicated as blue nodes connected through supply links
in the same color. Distributors with many outgoing links (more than 30 links) are highlighted in red. The
zoomed-in picture depicts a tree-like representation of the real-world distribution network, where nodes
represent firms and link their supply relations. Bottom: Illustrative network topologies positioned within the
resilience-efficiency space. Moving from branched tree structures to start networks implies increased system
efficiency. Moving from perfect trees to fully connected networks means increasing system resilience

2 Efficiency and resilience as systemic properties
The aim of this paper is to reconstruct and to explain the structure of large-scale distri-
bution networks. In Fig. 1, we visualize the largest empirical network of opioid distribu-
tions in the US, namely the distribution network of Mallinckrodt. This network encom-
passes 1132 supply relationships involving 417 distributors across all 50 US states. On the
right-hand side of the figure, we also provide a schematic representation of this network
to highlight its tree-like structure. In this structure, the manufacturer serves as the root
node, connecting to distributors, which in turn connect to other distributors or final buy-
ers further down the tree.

Building on previous theoretical insights [14, 23, 28], we consider efficiency and re-
silience as the key drivers for the formation of these networks, as explained in the follow-
ing. A supply chain is considered efficient if goods traverse a low number of firms on their
way from the production to the consumption side [14, 23, 29]. Short distribution paths
connecting manufacturers to final buyers favour a rapid transfer of information, thus fa-
cilitating more efficient material and financial flows [23]. Hence, with a few distributors
operating along such paths, lead times are shortened, and inventory costs are kept down,
thus enhancing the system’s efficiency [22]. Then, maximum efficiency is reached when
a single distributor, e.g., a central warehouse, manages all the shipments to final buyers.
In this case, a fully centralized structure, i.e., a star network, is achieved. As the num-
ber of intermediary steps between manufacturers and final buyers increases, the network
branches out, becoming a tree, and its efficiency decreases (see diagram in Fig. 1). We
note that this concept of efficiency is different from the microeconomic definition where
an efficient network maximizes the total utility of all firms [30, 31].
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Firms tend to implement centralization practices, i.e., they try to connect to central firms
with the most connections. These practices are appealing because they enable firms to
reduce transportation, inventory and handling costs and also enhance communication
[22, 32, 33]. Network centralization as a systemic property depends on the propensity of
individual firms to implement centralization practices and their position in the network.
The observation that different levels of network centralization emerges leads us to the
question: How do centralization practices of the single firm favour the efficient and central-
ized structure of empirical distribution networks?

Efficiency is not the only concern of a distribution system; resilience also has a crucial
role. In general, resilience implies the ability to withstand, adapt, and recover from dis-
ruptions [24, 25]. Resilient distribution networks must maintain functionality and ensure
a minimum supply level during disruptions. One key characteristic of resilient distribu-
tion networks is the presence of multiple distribution paths connecting manufacturers to
final buyers [34]. They showed that in case of disruptions, alternative paths not used un-
der usual operations represent a crucial resource to mitigate supply shortages and reduce
the supply deficit of final buyers. Within this path-based view, the least resilient network
topology has single paths connecting the manufacturer to final buyers. This corresponds
to a tree or a star structure with the manufacturers positioned at the top of the tree or the
center of the star, respectively. Then, structures with higher levels of resilience are attained
as nodes acquire incoming connections, and more distribution paths are available, e.g., in
a fully connected network as schematically visualized in the diagram in Fig. 1.

From a firm’s perspective, multi-sourcing is a valuable strategy to withstand disruptions.
That means, firms source products from multiple suppliers to decrease their exposure to
single failures [26]. This increases the number of distribution paths connecting manu-
facturers to final buyers and, hence, also improves the system’s resilience. This increase,
however, is not linear. Because firms are embedded in complex distribution networks, the
effectiveness of their actions strongly depends on the actions of other firms and the over-
all network topology. This observation brings us to the question: How do multi-sourcing
practices of single firms favour the resilient and path-redundant structure of the whole dis-
tribution network?

In Fig. 2, we use an illustrative diagram to better clarify the approach taken in this paper
and the two questions we address. In the left panel, we consider a single firm that can de-
cide about its own supply chain. Here, the firm can balance the trade-off between efficiency
and resilience by changing how much to invest in centralization and multi-sourcing. In
other words, the properties of the supply chain are controlled by a single firm. In con-
trast, in the right panel, we consider a self-organized distribution system that emerges
from decision of all firms. Their centralization and multi-sourcing practices collectively
impact the structure and the efficiency and resilience of the distribution network. Hence,
no single firm controls the entire network and its systemic properties. By addressing our
question, we aim to understand the impact of firms’ decisions on the entire structure.

The above two questions lead to the central question of this work: To what extent are
the centralization and multi-sourcing practices of firms sufficient to reproduce the emerging
structure of empirical distribution networks? To answer this question, we propose a parsi-
monious model that captures firms’ tendency towards centralization and multi-sourcing
practices using only two parameters. By exploring the parameters’ space, we reproduce a
wide range of network structures, from fully centralized to very branched ones and from
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Figure 2 Diagrammatic representation of the impact of centralization and multi-sourcing practices on
distribution systems and their systemic propensities, namely efficiency and resilience. In the left panel, a
single firm can alone control the efficiency and resilience of its own supply chain by changing how much to
invest in centralization and multi-sourcing practices. In the right panel, we consider a self-organized
distribution system. Here, the practices of all firms contribute to the structure of the system and its properties

perfect trees to almost fully connected ones. However, we do not limit ourselves to sim-
ply exploring the parameters space. We also estimate the model parameters using data
from over twenty US pharmaceutical distribution networks, reconstructed from the ar-
cos dataset. By doing so, we study how centralization and multi-sourcing practices affect
the efficiency and resilience of real-world distribution networks. Moreover, we quantify
the role of these practices in the growth of real-world distribution networks.

3 Model
Set-up Let us consider a distribution network comprising N + 1 nodes, representing one
manufacturer and N distribution firms; and E links, representing supply relations. Links
are directed according to the direction of the shipments, from senders to receivers. Given
a direct link i → j, from sender i to receiver j, we define i as the source node and j as the
target node. Then, dout

i is i’s out-degree, indicating the number of its target partners; and
din

i is its in-degree, meaning the number of source partners i relies on.
We model the growth dynamic of this system, where new nodes join the network, and

new links are established over time. At the initial time, t = 1, a simple chain of three nodes
exists: M → i → j, where M is the root node representing the manufacturer. Then, at every
time, a new supply link is formed between a source and a target node. Thus, the evolution
of E is given by E(t) = t + 1.

The source node is selected among the existing nodes in the network, while the target
node is either a newcomer or an existing node. Specifically, at a 1 – α rate, the target node
is a newcomer and forms a link with an existing node. At a rate α, a new link is established
between two existing nodes in the network. The selection rules for the source and target
node are clarified in the paragraphs below.

Note that, in this study, we exclude the root node M from forming new links. This is
based on the observation from our data that manufacturers are mainly connected to a



Amico et al. EPJ Data Science           (2024) 13:52 Page 6 of 19

single distributor (e.g., their warehouses), which then links to numerous other distribution
firms. This setup does not constrain the model’s generalizability.

Source node: centralization The source node i is selected among the existing nodes with
a probability pi(t), given by:

pi(t) = qs
dout

i (t)
t

+ (1 – qs)
1

N(t)
(1)

where the parameter qs is used to interpolate between two mechanisms: a preferential
attachment and a random one [35, 36]. Specifically, the first term on the right-hand side
describes a preferential attachment mechanism, where the probability of being selected
as a source node is proportional to the number of target partners the node has. Using the
equivalences E(t) = t + 1, and

∑
i,i�=M dout

i (t) = E(t) – 1, we simply write t as normalization
factor. The second term, instead, describes a random attachment mechanism where all
existing nodes have an equal probability of being selected as source nodes.

Thus, by tuning qs from zero to one, we can adjust the weight of the two mechanisms. In
the extreme case with qs = 1 (i.e., preferential attachment is fully dominant), a star network
is attained. A single node in the centre connects to all other nodes, thus leading to the most
centralized structure. By decreasing the value of qs, we obtain less centralized networks
and more branched out. In other words, qs is the centralization rate of the network. It
quantifies the probability that, in a given time, the source is a central node, namely a node
with high out-degree.

Target node: multi-sourcing The target node j is selected as a newcomer node at a rate
1–α and among the existing nodes at a rate α. In other words, at a rate α, an existing node j
in the network forms a link with a new source partner, thus implementing multi-sourcing.

The probability for an existing node j to implement multi-sourcing is given by:

pj(t) = qt
dout

j (t)
t – ni(t)

+ (1 – qt)
1

N(t) – ni(t)
(2)

where ni(t) = dout
i + 1 and qt is a model parameter. The factor ni accounts for non-eligible

targets, such as nodes already connected to the source and the source node itself. By this,
we do not allow for self-loops and multi-edges. Thus, the normalization of Eq. (2) is equal
to that of Eq. (1), apart from the correcting factors that exclude ni(t) non-eligible targets
from the count.

The model parameter qt is used to interpolate between two mechanisms: a preferential
(first term) and a random mechanism (second term). According to the preferential mech-
anism, nodes with more target partners are more likely to implement multi-sourcing. On
the other hand, the random mechanism assumes that every node has an equal probability
of adopting multi-sourcing. Hence, qt controls the relative propensity of nodes towards
multi-sourcing. It interpolates between two scenarios: one where all nodes share the same
propensity (the second term only) and the other where nodes exhibit maximum diversity
in their propensity towards multi-sourcing (first term only).

In addition, tuning qt has also a systemic effect. Higher qt values result in an increase in
the number of paths from root to leaves. If we consider a topology where all nodes have
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only a single source partner, i.e., a perfect tree, a single path links the root to each leaf.
Thus, the total number of paths matches the number of leaves. However, as we deviate
from the perfect tree structure and allow nodes to have multiple parents, the number of
paths starts to grow, and this growth can be controlled by the parameter qt .

Finally, note that the preferential attachment mechanism in Eq. (2) is based on the out-
degree of the target rather than on its in-degree or total degree, as proposed in previous
studies [37–39]. Thus, the multi-sourcing strategy is more likely to be implemented by
nodes with higher out-degrees than in-degrees. This choice reflects the idea that firms
with more customers (i.e., target nodes) have, on average, higher demand, and they may
need to source products from more suppliers to meet their demand.

4 Results
4.1 The US opioid distribution networks
Dataset To test our model, we use the arcos, a dataset maintained by the Drug En-
forcement Administration and recently made public by the US court [27]. This dataset
represents the largest collection of shipping records available to date. It comprises all legal
shipments of opioid drugs recorded in the United States between 2006 and 2014. There are
499,534,836 records involving approximately 1,928 distributing and manufacturing firms
and serving over 200,000 final buyers across the United States, such as pharmacies, hos-
pitals, and practitioners.

These records represent shipments of opioid drugs that are uniquely identified by their
national drug code (NDC). Each NDC comprises 11 digits, with the first five serving as a
unique manufacturer identifier. Grouping the records based on these initial five digits, we
obtain all shipments of drugs produced by the same manufacturer. By this, we reconstruct
and analyze the distribution networks of individual manufacturers. In the present study,
we focus on the largest 22 opioid manufacturers, whose products appear in more than
70% of the shipping records.

Network representation We study the annual snapshots of the 22 distribution networks.
We represent manufacturers, distributors, and final buyers as nodes; and supply relations
as links. Specifically, we consider a link between two nodes if at least one shipment has
been observed between them in the given year. Although the dataset contains information
on the quantity of shipped drugs, we do not consider it in the network representation
because our focus is on the network structure.

Note that the number of final buyers in the dataset is two orders of magnitude larger than
that of distributors. To ensure that the more numerous distributor-final buyer interactions
don’t mask distributors’ interactions, we represent multiple final buyers connected to the
same distributor as a single node. For the remainder of this paper, we do not distinguish
between manufacturers, distributors, and final buyers and refer to them as nodes.

Stylized facts In Fig. 3, we visualize the three largest networks on the US map and present
their key macroscopic features, focusing on the out-degree and in-degree distributions
(CCDF), as well as the distribution of path lengths. In particular, we analyze all paths link-
ing the root to the leaves. These paths represent possible distribution routes to deliver
products from the manufacturer to the final buyers.
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Figure 3 Top row: Geographical visualization of the three largest networks, with manufacturers represented
as square nodes and labelled as “M” and distributors represented as blue nodes. Nodes’ sizes are proportional
to their out-degrees. Central distributors are highlighted in orange. Middle row: Distribution of out-degrees
(orange) and in-degrees (blue). Bottom row: Path length distributions for the empirical networks (black) and
the synthetic networks generated using the configuration model (orange)

We see that all three networks examined share several topological features. First, all
networks are characterized by a few hub firms, highlighted as orange nodes in the net-
work visualization (top row of Fig. 3). These firms connect the manufacturer to numerous
smaller firms, potentially retailer distributors. The heterogeneity of these firms becomes
evident when evaluating the out-degree distributions (orange line in the middle row of
Fig. 3). In all three cases, we observe a relatively small average (about 1.6), a larger stan-
dard deviation, and pronounced heavy tails, thus indicating the presence of a few hubs
and many small firms.

Second, different from the out-degree, the in-degree distributions are usually narrower,
with standard deviations ranging from 0.5 to 4.8 (blue line in the middle row of Fig. 3).
Nonetheless, around 30% of the nodes have an in-degree value different from 1. This
means that a non-negligible number of firms engage in multi-sourcing by establishing
connections with multiple source partners.

Third, all the examined networks exhibit short path lengths. The average path length is
2.6, and the majority of them have a maximum length of 4 (bottom row of Fig. 3). This ob-
servation suggests that while the networks may not perfectly resemble star-like structures,
the distance between manufacturers and consumers remains notably short. To provide a
more quantitative assessment, we compare the empirical distributions with the ones de-
rived from the configuration model [40]. This comparison reveals that the maximum path
length generated by the random model (orange dashed line in the Figure) is nearly twice
the value observed in the empirical networks.
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Table 1 Key network features across 22 networks analyzed: Number of nodes Ñ, number of links Ẽ,
average in-degree and out-degree 〈dout/in〉, average path length 〈l〉, and standard deviations of out
and in-degrees σdout , σdin

Manufacturer Ñ Ẽ 〈dout/in〉 〈l〉 σdout σdin Manufacturer Ñ Ẽ 〈dout/in〉 〈l〉 σdout σdin

Mallinckrodt 750 1467 1.96 2.83 8.36 2.67 Ucb 425 540 1.27 3.07 6.56 0.65
Watson 637 1017 1.60 2.86 7.76 1.54 Ortho-mcneil 425 790 1.86 2.81 9.77 1.58
Hospira 606 1243 2.05 2.64 10.63 2.46 Amneal 421 786 1.87 2.78 9.36 1.92
Mikart 547 1707 3.12 2.77 11.18 4.83 Watson NY 385 539 1.40 2.71 6.80 1.04
Generics 536 940 1.75 2.68 8.31 3.17 Pf Lab 382 714 1.87 2.70 7.97 1.75
Vintage 498 848 1.70 2.69 7.96 2.88 Janssen 382 644 1.69 2.81 8.51 1.47
Actavis 489 566 1.16 2.79 6.95 0.70 Mylan 378 411 1.09 2.87 5.68 0.49
Teva 481 573 1.19 2.98 5.49 0.88 Associates 376 621 1.65 2.64 7.63 2.95
Hospira NC 456 688 1.51 2.65 8.24 1.34 Novartis 363 644 1.77 2.74 7.05 1.73
Boehringer 453 931 2.06 2.76 7.96 2.61 Actavis FL 354 395 1.12 2.90 5.26 0.76
Baxter 449 662 1.47 2.78 6.88 1.55 Actavis NJ 312 361 1.16 2.72 5.98 0.87

So far, we presented our findings for the three largest networks. However, they remain
valid for all the 22 networks examined. Table 1 summarizes the key network features for
these networks.

4.2 Optimal parameters: estimation and interpretation
To validate the proposed model, we first identify the parameters that best fit our data,
denoting them as the optimal parameters. We then interpret these parameters and show
that the networks generated by feeding the model with the optimal parameters exhibit the
distinctive features of the empirical ones.

Estimation The model has three free parameters: α, qs, and qt . The parameter α can be
determined analytically. Recalling that E(t) = t + 1, and that, on average, N(t) = (1 – α) ×
t + 1, we have:

α = 1 –
N(t) – 1
E(t) – 1

(3)

Thus, the optimal α is obtained by setting N(t) and E(t) to their corresponding empirical
values, Ñ and Ẽ, respectively.

After estimating α, we are left with the two parameters qs and qt . To obtain their optimal
values, we perform a grid search in the bi-dimensional parameters’ space. We consider
values of qs and qt ranging from 0 to 1, with an interval of 0.02. For each pair (qs, qt), we
run the model 100 times and assign a fitting score. Thus, we perform a total of 250,000
computer simulations (for each year of observation) and stop every simulation when the
generated network reaches the same number of links as the empirical one. Following the
approach proposed by Tomasello et al. [41], we design a fitting score normalized between
zero and one. Specifically, we compute the relative error, δ�, for each generated network
and for different network quantities, �:

δ�(qs, qt) =
�e – �s(qs, qt)

�e
(4)

where the subscript e stands for empirical, the subscript s stands for simulated. We select
five network quantities: the first and second moments of the distribution of out-degrees
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and in-degrees and the average path length. We choose these quantities in a way that they
include the minimum amount of information that, when used as model input, would allow
us to replicate the real-world features. Besides the most straightforward choice of first
moments, we include the second moments because the first moments alone are not very
informative about highly-skewed distributions. In the validation section below, we test
whether the proposed quantities to fit, combined with the model principles, are indeed
sufficient to reproduce the key features of the empirical networks.

For each pair, (qs, qt), the fitting score is then given by the fraction of simulated networks
for which the relative error δ� is smaller than a given threshold ε� for all network mea-
sures. We consider a 5% threshold on the first moments and a 25% threshold on the second
moments.

We expect that the (qs, qt) pairs with higher fitting scores are those with high values for qs

and qt . Low values of qt would imply uniform in-degree distributions, whereas low qs val-
ues would produce networks with long distribution paths. As discussed in Sect. 4.1, these
features do not characterize the empirical networks that instead exhibit right-skewed in-
degree distributions and short path lengths.

The exploration of the bi-dimensional space is visualized in Fig. 4a via the 2D color map
for the three reference networks. As expected, low values of qs and qt return a very low
fitting score while the optimal parameter pairs are (0.62, 0.60), (0.62, 0.32), (0.68, 0.52) for
the three networks. Moreover, within this parameter space, we observe a distinct optimal
region represented by the dark orange color, where the fitting score reaches its maximum
value of 0.71. This means that 71% of the networks generated by the model are close to
the empirical one, within the threshold ε. The optimal region is narrow along the qs di-

Figure 4 Estimation of the optimal parameters. (a): Bi-dimensional color map illustrating the exploration of
the parameter space for the three largest distribution networks in 2008. (b): Optimal qs (in orange) and qt (in
black) values for the 22 empirical networks. Circles indicate the parameter values estimated in the year 2008.
Bars indicate the maximum and minimum values estimated across the nine years
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mension and slightly broader along the qt dimension. This suggests that, compared to qs,
this region has relatively more suboptimal values for qt . Similar patterns are observed for
all the networks analyzed (not shown).

Interpretation The optimal qs and qt values for all the networks are reported in Fig. 4b.
The circles mark the values obtained for the reference year (2008), while the bars denote
the maximum and minimum values recorded over the nine years (2006-2014). We see that
qt values (in black) have broader variations ranging from 0.1 to 0.92. On the other hand,
the values for the centralization rates qs (in orange) are clustered within a relatively narrow
range between 0.55 and 0.75.

Still, small variations of qs can lead to high variations in terms of network centralization.
To illustrate this, we measure the level of network centralization [42], X , by taking into
account the out-degree of each node, as:

X =
N∑

i=1

dout
i∗ – dout

i
N – 1

(5)

where i∗ is the node with the highest out-degree. Then, to obtain a value of X ranging
from zero to one, we normalize the expression in Eq. (5) against the highest possible cen-
tralization value that is attained in a star configuration.

From Fig. 5a, we see that the level of network centralization increases with qs. Yet, this
increase is not linear and mainly occurs in the range [0.5, 0.9]. Interestingly, this range
includes the optimal qs for the analyzed data, highlighting diversity in centralization lev-
els within empirical networks. These networks exhibit both medium and high degrees of
centralization.

To further clarify the role of the centralization rate qs, we present two network snapshots
generated with qs = 0.9 and qs = 0.1. The network has a star-like configuration in the first
case, while a more branched structure is observed in the second case. This topological

Figure 5 (a): Network centralization χ , as in Eq. (5), plotted against the model parameter qs , together with
two network visualizations. One network is obtained with qs = 0.9 (star network on the right-hand side), and
the other is obtained with qs = 0.1 (branched network on the left-hand side). α has been set to 0.5, and
qt = 0.6. The grey band represents a 95% confidence interval across 20 model runs. (b): Out-degree
distributions for the networks generated with the two extreme values qs = 0.1 and qs = 0.9
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difference is also evident in the out-degree distributions, where larger values of qs result
in heavier tails, as depicted in Fig. 5b.

While qs controls the network centralization, the parameter qt controls the relative
propensity of nodes to adopt multi-sourcing. Specifically, qt enhances the diversity among
nodes in their propensities toward multi-sourcing. With low values of qt , nodes exhibit
comparable propensities, leading to uniform and lower in-degrees across all nodes. Con-
versely, as qt increases, certain nodes exhibit considerably higher in-degrees, while most
nodes still maintain smaller values.

We show the effect of qt at the node level by visualizing networks generated with qt = 0.1
and 0.9 on the left and right sides of Fig. 6a, respectively. In the left network, only two nodes
have in-degrees exceeding a given threshold, i.e., din > 7. These are depicted in orange. In
the right network, instead, many more nodes surpass this threshold. This distinction is
also highlighted in the distribution of in-degrees plotted in Fig. 6b: the higher qt value
results in a broader distribution.

Finally, qt does not only have node-level effects but also systemic ones. As discussed in
Sect. 3, higher values of qt lead to an increase in the total number of paths. To measure
this increase, we define the path increment as the ratio by which the number of paths in
a given network increases compared to those in a perfect tree of equivalent size, meaning
with the same number of links.

Figure 6a depicts the path increment as a function of qt . Notably, this increment ranges
from 1 to 105 for a network comprising 400 links. This implies that, with high values of qt ,
the number of paths expands by five orders of magnitude compared to a tree configuration.

Such a substantial increase in paths have also practical implications. With more distri-
bution paths, firms may rely on multiple routes to supply products to the final buyer. In
scenarios of disruption, even if some paths become unavailable, products can still reach
their final buyers. Overall, increasing qt may lead to the emergence of more resilient dis-
tribution networks. More details in the discussion.

Figure 6 (a) Path increment as a function of the model parameter qt , together with two network
visualizations obtained by setting qt = 0.1 (left-hand side) and qt = 0.9 (right-hand side). α has been set to 0.5,
and qs = 0.6. Nodes with large in-degree values, i.e., din > 7, are depicted in orange. The gray band indicates a
95% confidence interval over 20 model runs. (b) Distribution of in-degrees for networks generated by setting
qt to the two extreme values, i.e., qt = 0.1 and qt = 0.9
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Figure 7 Distributions of in-degrees (left), out-degrees (middle) and path lengths (right) for the three largest
empirical networks (colored dots); and for the simulated networks (light violet line). Error bands represent the
90% confidence interval estimated from 100 model simulations

4.3 Optimal parameters: validation
We validate our model by assessing its ability to replicate key characteristics of the empir-
ical networks. These include the stylized facts described in Sect. 4.1, as well as network
features related to efficiency and resilience.

Stylized facts For the stylized facts, we look at the distributions of in-degrees, out-
degrees, and paths. Note that this information was not utilized to estimate the optimal
model parameters. Throughout the parameter estimation, we solely considered the first
and second moments of these distributions. In Fig. 7, we compare the empirical distribu-
tions (colored dots) and the ones obtained from the model simulations (light violet lines).
Error bands represent the 90% confidence interval estimated from 100 simulations.

In the left column, we show the in-degree distributions and see that most of the em-
pirical data fall within the error band generated by the simulations. This indicates that
our model effectively captures the characteristic right-skewed nature of the distributions,
including the presence of outliers in the tails. In the middle column, we examine the out-
degree distributions. The model replicates the typical heavy-tail pattern observed in real-
world networks. In the right column, we assess the path length distributions. The model
accurately reproduces the peaked shape observed in the empirical data. Moreover, it cap-
tures the maximum distance of four steps between the manufacturer and the final buyers.
We perform the Kolmogorov-Smirnov test on the out-degrees and in-degrees to compare
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the distributions quantitatively. In 92% of the simulated out-degree distributions, we do
not find significant differences with their empirical counterparts (p < 0.01). This is not
true for the in-degree distributions, where we find statistical differences for most simula-
tions. This result may be due to the mismatch observed in the correspondence of medium
and low in-degree values. The model tends to underestimate the number of nodes with
these in-degree values. All empirical values fall within the confidence interval for the path-
length distribution, indicating a good match between the empirical and simulated data.
This highlights the model’s ability to reproduce not only the stylized facts of the networks
but also the details of two of the distributions analyzed.

Efficiency Here we consider two measures. The first one is the centralization index, X ,
as expressed by Eq. (5). The second measure is the global network efficiency, introduced
by Latora and Marchiori [43], and defined as the mean value of the inverse of the distances
between all pair of nodes in a network. However, different from the original definition, we
do not consider the distances between all pairs of nodes; instead, we only focus on the
paths connecting the root (manufacturer) to the leaf nodes (final buyers). Thus, we obtain
the following expression for global efficiency:

E =
1
|J|

∑

j∈J

1
dij

(6)

where i is the root node, J is the set of leaf nodes, and dij is the topological distance between
i and j. Note that centralization and global efficiency relate to each other: As the network
becomes more centralized, the distances between the root and the leaf nodes decrease,
thus increasing global efficiency.

In the left panel of Fig. 8, we compare the centralization (top-left) and efficiency
(bottom-left) of the 22 empirical networks with the simulated ones. Orange dots rep-
resent the empirical networks, while gray dots represent the expected values from 100
model simulations and the error bars their estimated 90% confidence interval. We see that
the centralization and efficiency of the empirical network follows within the error bars,
indicating a good match between the empirical data and the model.

Resilience To assess resilience, we maintain our path-based view [34] and consider two
measures. First, we measure the average number of paths available to every leaf node to
connect to the root. We call this number paths available. The higher the number of paths
available, the higher the network’s resilience. We complement this first measure with a
random attack simulation [44, 45]. For every simulated and empirical network, we remove
10% of the nodes at random and compute the fraction of paths that remain available from
the root to the leaf nodes, thus still allowing the network to function. We define this sec-
ond measure as the undisrupted path fraction. Our path-based resilience measures have
similarities with the availability and accessibility measures introduced by [44] but with
some differences. The difference between accessibility and paths available is that the for-
mer focuses on the length of the paths, while the latter focuses on the number of paths.
The shift in focus is because path lengths have already been discussed when looking at the
networks’ efficiency. The difference between availability and undisrupted path fraction
lies in the fact that Zhao et al. [44] focus on the number of leaf nodes that stay connected
to the root. In contrast, we focus on the number of paths linking leaves to the root [34].
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Figure 8 Centralization (top-left), Efficiency (bottom-left), Paths available (top-right), and Undisrupted paths
(bottom-right) measured for the 22 empirical networks (orange dots) and the simulated networks (gray dots
and error bars). The gray dots represent the mean value over 100 simulations, and the error bars represent the
90% confidence interval

In the right panel of Fig. 8, we compare the paths available (top-right) and undisrupted
paths fraction (bottom-right) of the 22 empirical networks with the simulated ones. Again,
for the number of paths available, we see that the model is able to replicate the empirical
number for the majority of the networks. Exceptions are the networks of Hospira, Janssen,
and Ortho-mcneil where the model significantly underestimates this number. This may be
due to the presence of more intermediary distributors with medium-low in-degree in the
empirical networks compared to the simulated ones, as already discussed in relation to the
in-degree distribution in Fig. 7. The presence of such distributors may provide additional
paths and increase resilience, but do not affect the distance of the leafs nodes to the root
(see bottom-right Fig. 7 and left panels in Fig. 8). For the undisrupted path fraction, the
values of empirical networks always follows within the simulation confidence intervals,
indicating a good match between the data and the model.

Overall, the comparisons between the simulations and real-world data, as illustrated in
Fig. 7 and Fig. 8, demonstrate the strong ability of our model to replicate the topology of
the distribution networks under study, as well as their resilience and efficiency.

5 Discussion and conclusions
Our economy crucially relies on distribution networks. These networks grow in size as
new firms join and new supply relations are formed. Here, we argue that the growth of
distribution networks is primarily driven by two necessities: efficiency and resilience.

In our view, efficiency and resilience are systemic properties not controlled by a single
entity but emerging from the interactions between manufacturers, distributors, and final



Amico et al. EPJ Data Science           (2024) 13:52 Page 16 of 19

buyers. Achieving an efficient and resilient distribution network depends on the collective
decisions of all firms rather than on an individual choice.

The goal of this paper is to clarify how these firm-level decisions influence the growth
of distribution networks and their systemic properties. To achieve this, we introduce a
network growth model where firms select their partners by implementing multi-sourcing
and centralization practices. We fine-tune and validate the model using data from 22 na-
tionwide pharmaceutical distribution networks in the US.

We find that these real-world networks exhibit a high centralization rate. As they grow,
approximately 60% of supply relations are formed with central firms. Although this per-
centage varies among different networks, it consistently remains above 50%. We con-
clude that the majority of supply relationships are formed through centralization prac-
tices. However, despite firms’ dedicated efforts to implement centralization, the resulting
networks do not closely resemble fully centralized and efficient structures. Instead, we find
medium centralized networks, where up to 60% of the outgoing links are not established
by the most central firm. Also, the global efficiency [43] measured in the empirical net-
works exhibits low values, consistently below 0.5, indicating the difference between the
firm level and the systemic level.

Next, our research demonstrates that multi-sourcing increases the number of available
distribution paths, which in turn enhances network resilience, as shown in [34]. However,
the effectiveness of multi-sourcing practices depends considerably on specific firms. If
firms are selected randomly to implement multi-sourcing, our simulation results show
that the number of paths increases by one order of magnitude compared to the case where
multi-sourcing is not implemented. Instead, if firms are selected depending on their size,
the number of paths goes up to five orders of magnitude. Thus, our simulations indicate
that firm heterogeneity is crucial when implementing this practice.

We confirm that this heterogeneity is indeed present in the data. In Fig. 4 we show that
in most examined networks firms have very different propensities in implementing multi-
sourcing. Specifically, firms with high out-degree tend to perform multi-sourcing, small
firms perform single-sourcing. Only a smaller number of networks exhibit a low hetero-
geneity in multi-sourcing. Also, we show that the average number of paths available to
each final buyer to connect to the manufacturer is below two for most networks, thus
suggesting low resilience and the potential to enhance it.

Finally, the validation step confirms a good match between simulated and empirical
data. The model can reproduce stylized facts of the empirical data, such as the broad
in-degree and out-degree distributions and the peaked path length distributions. Beyond
these stylized facts, the model successfully reproduces efficiency and resilience features of
the empirical networks, namely the centralization level, the global efficiency, the number
of available paths, and the number of undisrupted paths under random nodes’ removal.
Recovering these properties at the macro-level indicates that the proposed micro-rules
are valuable explanatory mechanisms for the observed network structures. This allows
us to bridge firm-level practices with the systemic properties of real-world distribution
networks.

To what extent the proposed model can reproduce stylized facts of other distribution
networks remains an open question worth investigating in future studies. The primary
challenge to address in this direction is data availability. Currently, most of the available
data regard production networks [46–48], with very few datasets collecting information
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on the supply relations between firms in distribution networks [34, 49]. The available data
are currently protected by stringent policy agreements, limiting their open usage within
the scientific community. Thus, the first important step is establishing secure infrastruc-
ture for storing and processing firms’ sensitive information [50]. This would enable the
safe utilization of such data by researchers that can support firms and institutions in their
decision-making processes.

As there is currently more data on production than distribution networks, an immediate
question is whether the proposed model can be extended to production networks. Recent
studies [47] on the nationwide production networks in Hungary and Ecuador have identi-
fied similar network features to those discussed for the opioid distribution networks, e.g.,
a peaked distribution of path lengths and heavy-tailed distributions of out-degree and in-
degree. Moreover, the resilience and efficiency principles underlying our model are broad
enough to apply to firm-level interactions within production networks. Thus, it is rea-
sonable to speculate that firms may adopt similar strategies in seeking suppliers, and the
proposed model can be generalized to production networks. Yet, a significant distinction
between the two networks can already be pointed out: distributor firms typically do not
rely on access to raw materials to commence operations. They predominantly handle fin-
ished products. In contrast, in production networks, the availability of raw materials can
influence firms’ choice in selecting their suppliers. This may lead to network features for
distribution networks that differ from those discussed in this paper and represent an in-
teresting venue for future research.

Many other research directions following up the current study can be considered. For
instance, it would be interestingly to model the simultaneous and coupled growth of a sup-
ply network, considering both the increase in the number of relations and the volume of
goods shipped. This expansion of scope could provide a more comprehensive understand-
ing of the functioning of these networks. Lastly, the present study focused on single distri-
bution networks around specific manufacturers. In real-world scenarios, manufacturers
often share distributors and final buyers which results in interconnected distribution net-
works. Exploring the mutual dependency of these growth processes is another compelling
area for future investigation.

In summary, we propose a network growth model to explain the emergence and growth
of distribution networks. The model is parsimonious, and its parameters are interpretable.
Despite its simplicity, we can calibrate and validate it against real-world data and find a
surprising ability to reproduce stylized facts. Hence, with our data-driven modeling ap-
proach, we showcase how to capture the complexity of real-world distribution systems.
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