Giacomo Vaccario

Senior Researcher at ETH Zürich

CHN G 73.2 Universitätstrasse 16 8006 Zürich, Switzerland ORCID: 0000-0001-8290-2742 ResearchID: rid91704 ⊠ gvaccario@ethz.ch

	Education and key qualifications
2015–2019	Doctorate of Science, ETH Zürich, Switzerland.
2015	ERASMUS+, Universitè Pierre-et-Marie-Curie, France.
2012–2015	Msc. in Physics, summa cum laude, Università La Sapienza, Italy.
2011-2012	MASt in Mathematics, Univesity of Cambridge, UK.
2008–2011	BSc. in Physics, Università La Sapienza, Italy.
2011	ERASMUS, Queen Mary University of London, UK.
	Employment
2023–Current	Senior Researcher, ETH Zürich, Chair of Ecosystem Management, Switzerland.
	Topic: Data-driven models for socio-ecological systems
	Group leader: Prof. Jaboury Ghazoul
2015–2024	Senior Researcher, ETH Zürich, Chair of Systems Design, Switzerland.
	Responsibilities: Research, supervision, lecturer and proposal writing
	Promotions: PhD (2019), Post-Doc (2021)
	Group leader: Prof. Frank Schweitzer
2015	Research Fellow, Universitè Pierre-et-Marie-Curie, LPTMC, France.
	Responsibilities: Research
	Topic: Modelling diffusion processes in heterogeneous spatial system
2014	Data scientist . AGT Engineering S.R.L., Rome, Italy.
	Topic: Data-driven models for consumer behavior in energy grids
	Team leader: Ing. Filippo Ugolini
	Projects
2024–	TIMBERHAUS: Climate-smart, circular, and sustainable solutions for use
Ongoing	of wood in the construction sector, funded by Horizon Europe and SERI.
	Main Contact: Dr. Anders Kjellow
2024–	MainWood: Scaling Up in Wood Construction, funded by ETH Board.
Ongoing	PI: Prof. Dr. Jaboury Ghazoul
2020–2024	AlpHorn: Signed Relations and Structural Balance: From Data to Models,
	tunded by SNF.
	PI: PTOI. DT. DT. FRANK SCHWEITZER AND PTOT. JANUS HOFYST

2015–2018 **Structure and Dynamics of Collaborative Information Spaces**, *funded by SERI*. PI: Prof. Dr. Dr. Frank Schweitzer

Background and experience

I started my career as a physicist and now focus on tackling societal issues, such as the *emergence and stability of collaboration*, and the *sustainability and resilience of social, economic, and ecological systems*. My work is grounded in *systems thinking and complexity*, and I combine this holistic perspective with *data-driven* models to provide a *quantitative understanding* of the world we live in. I am currently working on the MainWood project, which focuses on developing the scientific foundation for sustainably increasing the use of wood in the construction sector. This involves *collaborating with stakeholders* across the entire wood supply chain – from forest managers and sawmills to construction companies – to develop a shared understanding the *socio-ecological system* and identify pathways for transitioning to a bioeconomy. In addition to my research, I actively contribute to the academic community as an *editor* for Social Network Analysis and Mining, a *reviewer for for national research foundations and multiple journals*, including EPJ Data Science and Advances in Complex Systems. Furthermore, I have been committed to spreading my research and passion through organizing workshops, teaching courses, and *guiding over 20 student projects at Bachelor, Master, and PhD levels*.

Research Achievements

I have a track record of successful scientific output: to date, I have published **23 works** subdivided into **17 peer-reviewed journal articles**, 1 PhD Thesis, 1 patent, 4 pre-print under-review. My work has been recognized as widely **interdisciplinary**, with publications in top journals such as PNAS and Science Advances, and specialized journals in the fields of economics, data science, and complexity. Also, I have been invited to present my work at international conferences and in seminar of top European universities. Below, I grouped relevant publications for the project. In all these publications, I have been prominently involved in the formulation of the scientific idea, work, results, and paper writing. For most papers, there is also an author contribution statement available. Furthermore, I had also a leading and supervising role many of these publications, as they are the result of Master and PhD thesis.

Bridging bottom-up and top-down modelling of socio-economic systems. Social and economic organisations are complex systems whose systemic properties, such as resilience and efficiency, depend on the interactions of their constituting elements [1]. *The properties of these systems can rarely be designed top-down, they instead emerge bottom-up.* Agent-based models offer valuable tools to explore the mechanisms behind the emergence of socio-economic systems and their properties [2]. These models can be calibrated and validated using empirical data [3], enhancing their relevance for real-world applications. Furthermore, they provide regulators and policymakers with quantitative tools to understand the dynamics of socio-economic systems, identify optimal points of intervention, and design policies [4, 5]. These works are examples of my track records in modelling interactions of heterogeneous stakeholders (from individuals to firms, from distributors to central authorities), 2) formalizing decision-making of stakeholders, 3) how they interact with available tangible and intangible resources, 4) how decision-making and interactions shape the system dynamics and its emerging properties, and 5) how to calibrate and validate models with empirical data.

[1] Schweitzer, F., Andres, G., Casiraghi, G., Gote, C., Roller, R., Scholtes, I., Vaccario, G. & Zingg, C. (2022). Modeling social resilience: Questions, answers, open problems. Advances in Complex Systems, 25(08), 2250014 (doi:

10.1142/S021952592250014X)

[2] Amico, A., **Vaccario, G.**, Schweitzer, F. (2024). Efficiency and resilience: key drivers of distribution network growth. EPJ Data Science, 13(1), 52 (10.1140/epjds/s13688-024-00484-z).

[3] Tomasello, M. V., **Vaccario, G.**, & Schweitzer, F. (2017). Data-driven modeling of collaboration networks: a cross-domain analysis. EPJ Data Science, 6(1), 22.(doi: 10.1140/epjds/s13688-017-0117-5).

[4] Amico, A., Verginer, L., Casiraghi, G., Vaccario, G., Schweitzer, F. (2024). Adapting to disruptions: Managing supply chain resilience through product rerouting. Science Advances, 10(3), eadj1194 (doi: 10.1126/sciadv.adj1194).
[5] Schweitzer, F., Verginer, L., & Vaccario, G. (2020). Should the government reward cooperation? Insights from an agent-based model of wealth redistribution. Advances in Complex Systems, 23(07) (doi: 10.1142/S0219525920500186).

Modelling complex multi-agent interactions. Social and economic organizations are composed of heterogeneous actors with diverse interactions. These interactions are rarely limited to two individuals; they often involve multiple actors, requiring methods that go beyond pairwise relationships. This is where hypergraphs come in, modeling group interactions and reproducing patterns like consensus, polarization, or fragmentation [1, 2]. Signed networks further enrich this topic by modeling both positive and negative relations, representing cooperation and conflict. These relations in combination of agent-based models allowed us to model the competing mechanisms arising from status and structural balance, which are prominent theories for the relational changes [3]. This combination also allows for capturing the coexistence of hierarchies and collaboration observed within real-world social network [3]. Note that inferring from data group interactions and signed relations poses significant challenges, and I have co-developed tools to overcome this hurdle [4,5]. These works showcase other three fundamental skills for the success of the project: 1) modelling **complex interactions driving social dynamics**, 2) modelling **hierarchies and its interplay with other mechanisms** and 3) how to **leverage data to empirical inform models**.

[1] Papanikolaou, N., **Vaccario, G.**, Hormann, E., Lambiotte, R., & Schweitzer, F. (2022). Consensus from group interactions: An adaptive voter model on hypergraphs. Physical Review E, 105(5), 054307 (doi: 10.1103/Phys-RevE.105.054307).

[2] Papanikolaou, N., Lambiotte, R., & Vaccario, G. (2023). Fragmentation from group interactions: A higher-order adaptive voter model. Physica A: Statistical Mechanics and its Applications 630, 129257, (doi: 10.1016/j.physa.2023.129257)
[3] Górski, P., Sulik, A., Andres, G., Vaccario, G., & Hołyst, J. (2024). Co-existence of balance and hierarchies: an ego perspective to explain empirical networks (Under review)

[4] Andres, G., Casiraghi, G., **Vaccario G.**, & Schweitzer, F. (2023). *Reconstructing signed relations from interaction data*. Scientific Reports 13 (1), 20689

[5] Andres, G., **Vaccario G.**, & Schweitzer, F. (2024). *Stochastic Modelling of Hypergraphs: Zero-inflation to counteract the curse of dimensionality.* (ArXiv).

Supervision and mentoring in complexity and systems thinking

From 2015 to 2024, I made significant contributions and designed courses at ETH Zürich. These include the courses of "System Dynamics and Complexity," "Complex Networks," and "Agent-Based Modeling" offered by the Chair of Systems Design, ETH Zürich, [1] and the course of "Understanding Complexity through System approaches" offered by the Chair of Ecosystem Management [2]. My involvement encompassed creating and delivering lectures and engaging exercise sessions. These activities allowed me to attract many excellent students for their master thesis and semester projects, and a large fraction of them was motivated to continue their academic education with a PhD and are succeeding in this. I have supervised 20 students at the Bachelor, Master, and PhD levels, with very different break ground from mathematics to environmental science, from physics to management. I had to guid them through the process of formulating a research question,

developing a research plan, and executing it, keeping a truly **interdisciplinary perspective**. The result of their work reflected an spectacular diversity from conceptual agent-based models of to system dynamic models of fresh waters ecosystem. This exchange of knowledge and experience has been a rewarding experience for me, and I am proud of the achievements of my students. I am currently qualified to supervise Bachelor's, Master's, and PhD students at ETH Zurich.

[1] https://www.sg.ethz.ch/teaching

[2] https://ecology.ethz.ch/education.html

Other contributions to the academic community

Scientometrics and Informetrics. I am careful and proficient expert of scientometric indicators, i.e., metrics to evaluate the impact of scientific work. I have contributed to the ongoing discussion of the limitations of existing metrics and developed new outlines. In particular, I have developed statistical tools to verify the **fairness of metrics** used to rank publications or scientists, and way **suppress biases in rankings** [1]. Moreover, I have illustrated limitations of existing network-based metrics to rank journals and proposed new ones based on data-driven paradigm [2, 3]. My work has been recognized and published in top journals of the scientometric and informetric community. I have also **organized a satellite and a topical issue** on Success in Science [4], touching important societal issues like gender bias in the scientific community.

[1]**Vaccario, G.**, Medo, M., Wider, N., & Mariani, M. S. (2017). Quantifying and suppressing ranking bias in a large citation network. Journal of informetrics, 11(3), 766-782. (doi: 10.1016/j.joi.2017.05.014)

[2] **Vaccario G.**, Verginer L., When standard network measures fail to rank journals: A theoretical and empirical analysis. Quantitative Science Studies, 3(4)

[3] **Vaccario, G.**, Xu, S., Mariani, M. S., & Medo, M (2024). The quest for an unbiased scientific impact indicator remains open. Proceedings of the National Academy of Sciences of the United States of America, 121(41), e2410021121. (doi: 10.1073/pnas.2410021121)

[4] Verginer, L., **Vaccario, G.**, & Petersen, A. M. (2021). Foreword to the special issue on success in science. Advances in Complex Systems, 24(3-4), (doi: 10.1142/s021952592102001x)

Academic services. I have been a strong contributor to the academic community. I have served as reviewer for a national research foundation and multiple journals, including EPJ Data Science and Advances in Complex Systems. Also, I have an editor for Social Network Analysis and Mining, a flagship journal in at the cross section between network, social and computer science. I have been actively involved in the organization of workshops [1, 2] and conferences [3] of complexity and data-science. I am also a member of the Complex Systems Society and of the DPG (German Physical Society), division of socio-economic physics. Many of may works have been presented and discussed at the yearly conference of these communities.

[1] "Signed Relations and Structural Balance" workshop at Conference on Complex System 2022, Palma de Mallorca https://sites.google.com/view/relations-balance-satellite/

[2] "Signed Relations and Structural Balance", ETH workshop organized by the Chair of System Design https: //www.sg.ethz.ch/events/workshop-structural-balance-may-2024/

[3] ASONAM 2022 – The 2022 IEEE/ACM International Conference on Advances in Social Network Analysis and Mining https://asonam.cpsc.ucalgary.ca/2022/